Tai Chi, somatic awareness and the "touch" cortex in the brain

Catherine Kerr
July-2009
International Tai Chi Symposium
Nashville, TN

Somatic awareness in Tai Chi

Today I'll describe two experiments that we have conducted that shed light on the effect of Tai Chi on the brain

Hand-brain connection in Tai Chi

- Both of the experiments focus on the connection between the cerebral cortex and the hands and fingers...
 - Experiment 1: Tai Chi and tactile acuity—looks at whether Tai Chi practitioners have enhanced touch sensitivity at the fingertips
 - Experiment 2: Mindfulness, somatic awareness and the brain—looks at the effect of mindfulness, which is a somatically focused form of meditation, on the brain

Pause to consider the Tai Chi ball

- Practitioners use the tai chi ball as a visualization that helps structure their practice
- They visualize feeling and moving a ball as they move through the form...
- If you are a practitioner, make a Tai Chi ball
- Is it easier to be aware of your hands and fingers than other body areas?

The science of Tai Chi

The science of Tai Chi: What we know from clinical trials in the elderly

Tai Chi

- Decreases fall risk
- Improves gait
- Improves proprioceptive awareness

What we don't know: is there something specific about Tai Chi that makes these outcomes possible?

Somatic awareness in Tai Chi: a potent hidden factor?

Tai Chi, somatosensory awareness and the brain: where do we begin?

A practice manual gives us a clue

Tai Chi, somatosensory awareness and the brain: where do we begin?

 A practice manual gives us a clue

Tai Chi practitioners focus mental attention on the body's extremities including the finger and hands as they feel the Tai Chi ball while they perform static and moving postures

Tai Chi, somatosensory awareness and the brain: where do we begin?

The hand and fingers are special

 A practice manual gives us a clue

▶ Tai Chi practitioners focus mental attention on the body's extremities including the finger and hands as they feel the Tai Chi ball while they perform static and moving postures

The hand and fingers are special....

What happens in the brain when you touch something with your hand or fingers?

Somatosensory cortex encodes touch stimuli felt with the fingers in a somatotopic map ("homunculus")—the brain's primary map of the finger

<u>Two cool facts</u> about somatosensory cortex tell us why the hands and fingers are special

1. Somatosensory cortex ("homunculus")— hands and fingers are massively over-represented

2. Somatically focused attention changes the brains's map of the hand and fingers

- When you focus attention, over time, on your hands and fingers, you change the way your neurons fire...
- You may be able to change brain structure through practice (this has been shown in jugglers)

Figure F-3: Motor and Somatosensory Cortex

- Enhanced tactile acuity is directly related to brain changes (referred to as "cortical plasticity") in the body map
 - Blind Braille readers
 - Professional piano players

<u>EXPERIMENT 1: Determine</u> <u>whether tactile acuity is</u> enhanced in Tai Chi players

- Unlike Braille or piano playing, the Tai Chi studied here involves very little direct touch-based practice with the fingertips (practice is described in depth by BK Frantzis)
- If touch practice is not driving the effect, what might be the cause?

Somatically focused attention changes the brain in the brain's primary finger map

We already know that

When you pay attention to your finger while it's being stimulated you cause short term changes in your finger map (Braun et al 2002)

Figure F-3: Motor and Somatosensory Cortex

Methods: Subjects

- Subjects.
 - ▶ 14 TC subjects were recruited from a local Tai Chi studio (Brookline Tai Chi) where instruction is offered in a standardized TC curriculum.
 - ▶ 14 control subjects were recruited from the community and matched for gender and age (+/- 2 years).

Exclusion criteria

- ▶ In both groups, exclusion criteria included:
 - Calluses at the test site (the right index finger),
 - History of rheumatologic disorder,
 - Neurological disorder,
 - Recent trauma to the right upper extremity.
 - History of hand drumming

Tai Chi inclusion criteria

- Had to have practiced for over two years
 - Average of 3 sessions per week
 - Each session lasting 40 minutes or more.

Testing tactile acuity at the fingertip

- Think of tactile acuity as the "vision" associated with the tips of your fingers
- Tactile acuity is tested using a kind of "vision test"

Tactile acuity

 Tactile spatial acuity at the fingertip - measured with tactile gratings

Tactile spatial acuity at the fingertip is highly related to measures of sensory cortical function

Study procedures

- The tactile spatial acuity threshold was determined for each subject
- Acuity = the <u>smallest</u> <u>width</u> at which a subject could distinguish between two different grating orientations
- Test conducted at the right index finger

Results (lower is better)—index finger acuity

Figure 1: Tactile Acuity in Tai Chi vs Normals

Results (lower is better)—index finger acuity

Figure 1: Tactile Acuity in Tai Chi vs Normals

Younger vs older subjects (lower is better) older subjects got almost all of the benefit

Not a simple effect of exercise

Effect of exercise, TC practice on tactile acuity: Regression analysis found no significant exercise effect on tactile acuity (hours/week beta=-.189, p<.411) across the entire sample. The study also found no effect of TC practice (hours/week, beta=.391, p<.26) on tactile acuity in TC practitioners

LIMITATIONS

- (1) This study is cross-sectional does not eliminate the possibility that persons with good tactile acuity are drawn, disproportionately, to practice Tai Chi
- (2) Because Tai Chi practitioners were only recruited from one school, we cannot say whether the effects observed here are due to the particular style being studied.

Our model

We hypothesize that it is the <u>attentional focus</u> of Tai Chi that, over long periods of time, elicits brain changes that enhance tactile acuity

This study is a first test of Tai Chi as a sensory attentional training program

Broadest implications of study

- older subjects receive almost all of the benefit
- Does learning how to focus somatosensory attention on the body during Tai Chi exercise spare the effects of aging on the sensorimotor system?

EXPERIMENT 2: Does mindfulness training enhance control over neurons in the **finger map** in the brain?

Mindfulness is based on Buddhist "Four Foundations of Mindfulness" Sutra

- Typical introductory practices focus on the body:
- Meditative body scan: Attending to a body part and then disattending and moving to the next body part
- Sitting meditation- focus on breath and breathing related sensation....

Our mindfulness study

- We looked at the effects of the 8-week Mindfulness Based Stress Reduction (MBSR) designed by Jon Kabat Zinn on the brain
 - 8 week training program components include:
 - Body scan meditation
 - Mindful Yoga
 - Sitting meditation

MBSR shown in clinical trials to relieve pain and distress in many conditions

Long term question: Does changing the way a person attends to her body actually reduce her pain or distress?

Somatosensory Cortex is active in mindfulness meditation

Figure F-3: Motor and Somatosensory Cortex

Primary somatosensory cortex

alpha rhythm (8-13 Hz) is cardinal feature of the primary somatosensory cortex map

Alpha rhythm as volume control

Alpha rhythm and the brain

High amplitude=high power=blocked sensory transmission to cortex = disattention

mmmmmm

Low amplitude=low power = sensory transmission to cortex = sensory attention

Our study design

- RCT: Randomize 14 normal healthy people into 2 groups: MBSR vs controls
- After 8 weeks, compare alpha rhythms in the fingermap elicited by somatosensory attentional cueing task

Do mindfulness meditators have better fine control of the alpha rhythm in the finger map?

- Magnetoencephalography (MEG)
 - High temporal and spatial resolution recordings of brain activity
 - Uses SQUID magnet to record the brain's faint magnetic fields
 - Copper lined chamber
 - Super conducting quantum interference devices

Our design

- Cue subject to focus on "hand", "foot" or "either"
- Allow brief (1-2 second) period during which alpha rhythm is measured
- Stimulate finger or toe

Compare alpha rhythms in finger map

RCT results: MBSR vs Control group

ALPHA POWER in the finger map

Meditators show greater ability to change alpha amplitude in the finger map at will (red = attend away, blue = attend to finger) after 8 weeks training, with meditators showing significantly greater separation than non-meditators.

Mindfulness Meditation increases fine control over neurons in the finger map: clinical relevance

- May be important in
 - Chronic pain
 - Fatigue
 - Depression

Alpha rhythm, Tai Chi and aging

- Do Tai Chi practitioners have better fine control over the alpha rhythm?
- Does this control extend beyond the hands and fingers to include the feet and other body areas?

Brain rhythms, Tai Chi and aging

- Does brain rhythm control explain
 - Decreased fall risk
 - Improved gait
 - Improved proprioceptive awareness
 - Enhanced sense of touch

Brain rhythms, Tai Chi and aging

- Does brain rhythm control explain
 - Decreased fall risk
 - Improved gait
 - Improved proprioceptive awareness
 - Enhanced sense of touch
 Stay tuned!

Tai Chi ball

When you visualize the
Tai Chi ball in your
practice, you can think
about the hand-brain
connection

Collaborators

Special thanks to Brookline Tai Chi studio (Dan Klieman and Marie-Helene Jouvin)

- Neuroscience mentor
 - Christopher Moore, MIT
- CAM mentor
 - Ted Kaptchuk
- Brain rhythm collaborator
 - Stephanie Jones, MGH
- Other collaborators
 - Ronnie Littenberg
 - Rachel Wasserman
 - ▶ James Carmody
 - Sara Lazar

- Research Assistants/Grad Students
 - Kate Wan
 - Anna Wexler
 - Jessica Shaw
 - Joel Villanueva
 - Dominique Pritchett
 - Vanessa Chen